Matrix Isolation Studies on Alkali-metal Phosphites, Arsenites, and Antimonites. The Characterisation of Molecular NaPO₂, CsAsO₂, and KSbO₂ By J. Steven Ogden * and Stephen J. Williams, Department of Chemistry, The University, Southampton SO9 5NH Infrared spectra have been obtained for some molecular species MPO₂, MAsO₂, and MSbO₂ (M = alkali metal) isolated in nitrogen matrices, and three of these species are characterised in detail. For NaPO₂, fundamentals are observed at 1 062.1, ν (P-O), 1 151.6, ν (P-O), and 523.0 δ (PO₂) cm⁻¹, whilst in CsAsO₂ and KSbO₂, corresponding modes are observed at 863.0, 851.5, and 393.0 cm⁻¹ and at 764.6, 744.8, and 339.0 cm⁻¹ respectively. ¹⁸O-enrichment experiments indicate $C_{2\nu}$ ring structures for all three MXO₂ species, and bond angles are estimated as OPO = 114, OAsO = 115, and OSbO = 106°. The combination of matrix isolation and i.r. spectroscopy is now well established as a method of characterising new high-temperature chemical species, and we are currently using these techniques to investigate a wide range of oxo-anion salts.¹ In particular, we have shown that molecular NaPO3 is an important species produced in the vaporisation of sodium orthophosphate (Na₃PO₄) or trimetaphosphate (Na₅P₃O₁₀) from platinum containers,^{2,3} and established both its shape and several of its vibrational fundamentals. However, the use of molybdenum or tantalum sample holders in these experiments has recently been shown to give rise to a second species which has qualitatively been identified as NaPO₂. A preliminary report of this work has appeared elsewhere,3 and one of the purposes of this present paper is to discuss the spectra of this species in more detail, and to report similar studies on other alkali-metal phosphate systems. Virtually nothing is known about the corresponding arsenic and antimony species, and the remainder of this paper describes our matrix i.r. results on a range of alkali-metal As and Sb oxo-salts such as KAsO₂. ## EXPERIMENTAL The phosphate samples used in these experiments were obtained by two general routes. For the lithium, sodium, and potassium systems, all the salts were obtained commercially and used without further purification. In the case of the remaining rubidium and caesium systems, phosphate samples were prepared either in situ or beforehand by heating a 1:1 mixture of the anhydrous carbonate with P2O5 until there was no further evolution of CO2.4 This synthetic route was also used to prepare samples of sodium and potassium phosphates to confirm that the same spectral results could be obtained as from the commercial materials. Samples of ¹⁸O-enriched sodium phosphate were prepared by oxidation of the phosphide as described in our earlier paper,2 and in all the phosphate experiments discussed here samples were mixed with tantalum powder prior to vaporisation. For the arsenic and antimony systems, the starting materials were typically either commercially available salts such as KAsO₂, NaAsO₂, or KSb(OH)₆, or 1:1 mixtures of the anhydrous carbonate with As₂O₃ or Sb₂O₃. These mixtures similarly evolved CO₂ on heating and ultimately yielded spectra which were identical to those from the corresponding commercial salts. Oxygen-18 enrichment in these systems was conveniently carried out by water exchange. Here, a weighed sample of either the commercial salt or the product of a carbonate/oxide fusion reaction was allowed to stand in contact with $\rm H_2^{18}O$ (typically 1.0 cm³, 90 atom % $\rm ^{18}O$) in a sealed tube for several days, at room temperature. After removal of water, the solid remaining ultimately yielded spectra which showed that oxygen exchange had taken place. The general features of our matrix isolation apparatus have been described elsewhere.⁵ For this work, samples were typically vaporised from a small platinum boat contained inside an alumina holder fitted with an inductively heated tantalum sleeve. Sample temperatures during deposition were monitored using an optical pyrometer, and matrix gas flows were regulated with a fine-control needle valve. The matrix gases used in these experiments were high purity nitrogen and argon (BOC 99.999%), but nitrogen was found to give superior spectra for all systems, and all the results discussed in this paper refer to nitrogen matrices. Normal deposition times were typically 30—60 min, and during this period, the central CsI window in our cryostat was maintained at ca. 12 K and the matrix ratio maintained at >1000:1. However, a few experiments were carried out using very rapid deposition times (ca. 15—20 min) with lower matrix ratios in an attempt to identify polymeric species, and controlled diffusion studies up to ca. 35 K were also performed. Infrared spectra were recorded on a Perkin-Elmer 225 IR spectrometer (200—5 000 cm⁻¹) and calibrated using standard procedures. #### RESULTS AND DISCUSSION MPO₂ Species.—In our earlier note on the identification of molecular NaPO₂, we indicated how this molecule could be produced as a result of heating a mixture of sodium phosphate (Na₅P₃O₁₀) and tantalum powder in vacuo at ca. 1 500 K.³ Subsequent trapping in a nitrogen matrix led to its characterisation by i.r. spectroscopy, and a C_{2v} ring structure was proposed on the basis of 16 O/ 18 O isotope patterns in the P-O stretching region. The experiments described here extend these studies to include the complete range of common alkali metals (Li \rightarrow Cs), and also extend the spectral range into the far-i.r. in a search for the remaining vibrational fundamentals. Figure 1(a) shows a typical nitrogen matrix spectrum FIGURE 1 (a) N₂ matrix i.r. spectrum obtained from vaporisation of Li₃PO₄-Ta. (b) N₂ matrix i.r. spectrum obtained from Na₅P₃O₁₀-Ta. (c) Isotope patterns observed for matrix-isolated NaPO₂ (ca. 26 atom % ¹⁸O enrichment). (d) Calculated spectrum (1 200—250 cm⁻¹) obtained from the vaporisation of a (1:1) Li₃PO₄-Ta mixture at ca. 1 750 K. This spectrum shows prominent absorptions in the P-O stretching region (1 000—1 200 cm⁻¹) and at ca. 530 cm⁻¹, and also two bands at 302 and 311 cm⁻¹. Analogous experiments on sodium phosphate systems (Na₃PO₄-Ta or Na₅P₃O₁₀-Ta) produced three bands at 1 151.6, 1 062.1, and 523.0 cm⁻¹, and similar spectra were also obtained from prepared samples of potassium, rubidium, and caesium phosphates. However, only the Li system gave absorptions at ca. 300 cm⁻¹. The results obtained from a range of alkali-metal phosphate systems are summarised in Table 1, where it is evident that three bands at ca. 1 150, ca. 1 060, and ca. 520 cm⁻¹ are common to all phosphate-tantalum mixtures. Some of these systems were also studied in argon matrices, but these spectra were generally of poorer quality, with bands often showing complex structure which may be attributed to multiple site trapping.6 The general positions of these bands, however, were very similar to the singlet absorptions observed in nitrogen. On the basis of our earlier characterisation of NaPO₂, the bands in Table 1 are assigned as fundamentals of the PO₂ unit in a general C_{2v} structure M_{O}^{O} P, where M represents the alkali metal. For this structure, $\Gamma_{\text{vib.}} = 3A_1 + B_1 + 2B_2$ with the PO₂ unit contributing three in-plane modes with symmetries A_1 (stretch), B_2 (stretch), and A_1 (bend). A preliminary identification of these modes may be made by reference to SO₂ (which is isoelectronic with PO₂⁻) and to the C_{2v} ion H_2 PO₂⁻. In SO₂, the three fundamentals occur ⁷ at 1 151.4 (A_1), 1 361.8 (B_2), and 517.7 cm⁻¹ (A_1), whilst in H_2 PO₂⁻ the corresponding PO₂ modes lie ⁸ at 1 046, 1 180, and 470 cm⁻¹. Comparison of these frequencies with the data in Table 1 leads to the proposed assignments, and these were subsequently confirmed by ¹⁸O-enrichment experiments. The remaining $A_1 + B_1 + B_2$ modes result from cation motion. Two of these $(A_1 + B_2)$ may be approximately described as M-O stretching modes, whilst the B_1 vibration corresponds to an out-of-plane deformation. By analogy with other systems ² in which alkali-metal-oxygen modes have been assigned, Table 1 Infrared vibrational frequencies (cm⁻¹) for matrix-isolated MXO₂ species | | | Assignments * | | | | | |--|--|-------------------------|------------------------|------------------------------|--|--| | System | Species | ν (X-O), B_2 | ν(X-O), A ₁ | $\delta(\mathrm{XO_2}), A_1$ | | | | Li ₃ PO ₄ -Ta | $\overline{\text{LiPO}_2}$ | 1 134.8 | 1 064.0 | 546.2 | | | | $ \begin{array}{c} \text{Na}_{5}\text{PO}_{4}\text{-Ta} \\ \text{Na}_{5}\text{P}_{3}\text{O}_{10}\text{-Ta} \\ \text{Na}_{4}\text{P}_{2}\text{O}_{7}\text{-Ta} \end{array} $ | NaPO ₂ | 1 151.6 | 1 062.1 | 523.0 | | | | KPO_3-Ta $K_4P_3O_7-Ta$ | KPO ₂ | 1 156.6 | 1 059.5 | 507.4 | | | | $(K_2CO_3 + P_2O_5)-TaJ$
$(Rb_2CO_3 + P_2O_5)-Ta$
$(Cs_2CO_3 + P_2O_5)-Ta$ | RbPO ₂
CsPO ₂ | 1 159.3
1 158.4 | 1 058.2
1 056.0 | 501.3
496.1 | | | | $\left\{ \begin{array}{l} (\mathrm{Na_2CO_3} + \mathrm{As_2O_3}) \\ \mathrm{NaAsO_2} \end{array} \right\}$ | NaAsO ₂ | 853.2 | 868.2 | 418.0 | | | | $(K_2CO_3 + As_2O_3)$
$KAsO_4$ | $KAsO_2$ | 852.6 | 865.4 | 409.2 | | | | $(Cs_2CO_3 + As_2O_3)$
NaSb $(OH)_4$ | CsAsO ₂
NaSbO ₂ | 851.5
7 4 5.8 | 863.0
767.0 | 393.0 | | | | $\left\{ \begin{array}{l} \operatorname{KSb}(\grave{\mathrm{OH}})_{\mathfrak{g}} \\ (\operatorname{K_{2}CO_{3}} + \operatorname{Sb_{2}O_{3}}) \end{array} \right\}$ | KSbO ₂ | 744.8 | 764.6 | 339.0 | | | | $(Cs_2CO_3 + Sb_2O_3)$ | CsSbO ₂ | 743.6 6 | 763.2 • | 331.0 | | | ^a Nitrogen matrices, frequency accuracy ± 0.5 cm⁻¹. ^b Mean of antimony isotope doublet at 744.0, 743.2 cm⁻¹. ^c Mean of antimony isotope doublet at 763.4, 762.9 cm⁻¹. these remaining features are all expected to lie below 500 cm⁻¹. However, apart from the Li₃PO₄-Ta system where two bands at 302 and 311 cm⁻¹ are tentatively assigned to Li-O modes, our spectra showed little evidence of these fundamentals. Finally, the effect of controlled diffusion and of varying the deposition rate was studied for several systems. In general, the intensities of the three bending mode, the observation of the lowest frequency triplet at ca. 510 cm⁻¹ also permits a more rigorous quantitative analysis of the PO₂ unit. The GVFF (general valence force field) for a C_{2v} triatomic species contains four independent parameters which may be defined by equation (1). In this expression, $F_{\rm R}$ and F_{ϕ} are the principal force constants associated with bond stretching and angle deformation, whilst $F_{\rm RR}$ and Table 2 Observed and calculated frequencies (cm⁻¹) for isotopically labelled MXO₂ species | NaPO ₂ | | | CsAsO ₂ | | | KSbO ₂ | | | |---------------------------------|----------------------------|----------------------------------------------------------|--------------------|-----------|---------------|-------------------|----------------|------------------------------------| | Observed * | Calc. I | Observed * | Calc. II | Calc. III | Observed * | Calc. IV | Calc. V | Assignment | | 1 151.6 | 1 151.6 | 851.5 | 851.5 | 851.5 | 744 .8 | 744 .8 | 744.8 | $MX^{16}O_{2}(B_{2})$ | | 1 136.9 | 1 137.0 | 817.1 | 816.3 | 816.3 | 715.8 | 715.8 | 715.5լ | MX16O18O | | | | | | | 713.8 | 713.8 | 713.5} | | | 1 113.9 | 1 113.7 | 814.1 | 814.2 | 814.2 | 708.4 | 708.3 | 708.3 | $MX^{18}O_2$ | | 1 062.1 | 1 062.1 | 863.0 | 863.0 | 863.0 | 764 .6 | 764.6 | 76 4 .6 | $MX^{16}O_{2}(A_{1})$ | | 1 035.4 | 1 035.3 | 857.7 | 857.6 | 857.6 | 757.8 | 757.8 | 757.9 | MX ¹⁶ O ¹⁸ O | | | | | | | 755.6 | 755.7 | 7 55.6} | | | 1 017.3 | 1 017.2 | 821.0 | 820.8 | 819.0 | 725.5 | 725.4 | 724.7 | $MX^{18}O_2$ | | 523.0 | 523.0 | 393.0 | 393.0 | | 339.0 | 339.0 | | $MX^{16}O_{3}(A_{1})$ | | 512.2 | 511.8 | 383.0 | 383.5 | | 331.0 | 330.4 | | MX16O18O | | 500.6 | 500.4 | 374.0 | 373.9 | | 323.0 | 321.5 | | MX ¹⁸ O ₂ | | Parameters used in calculations | | | Calc. I | Calc. II | Calc. III | Calc. IV | Calc. V | | | | | $F_{\rm R}/{ m mdyn}~{ m \AA}^{-1}$ | | 7.70 | 5.63 | 5.74 | 4.69, 4.71 | 4.73, 4.76 | | R. ^ | $\stackrel{X}{\smile} R_2$ | $F_{\rm RR}/{\rm mdyn}~{\rm \AA}^{-1}$ | | 0.46 | 0.39 | 0.50 | 0.23 | 0.28 | | | φ \ | $F_{\phi}/\text{mdyn Å rad}^{-2}$ | | 1.87 | 1.95 | | 1.94 | | | 0. | >0 | $F_{\mathbf{R}_{\phi}}/\mathrm{mdyn}\;\mathrm{rad}^{-1}$ | | 0.27 | -0.3 | | -0.24 | | | | ./ | $R/\mathrm{\AA}$ | | 1.5 | 1.8 | 1.8 | 2.0 | 2.0 | | | M | φ /° | | 114 | 115 | 115 | 106 | 106 | | | | | | | | | | | ^{*} Nitrogen matrices, frequency accuracy ±0.5 cm⁻¹. fundamentals assigned to the PO₂ unit decreased during diffusion, and minor new features appeared close to the PO₂ bands. Thus for the sodium system, new bands were noted at 1 162, 1 155, 1 068, and 1 065 cm⁻¹, and the other alkali-metal phosphites produced similar shoulders. The appearance of such features has previously been noted in diffusion studies or KNO₃ ¹ and NaPO₃, ² where they were assigned as weak aggregates, and a similar explanation seems appropriate here. These bands were also observed in experiments employing low matrix ratios, but more significantly, all these experiments gave 'monomer' PO₂ bands with the same relative intensities as found previously. ¹⁸O enrichment in NaPO₂. Our earlier report on the identification of NaPO₂ showed that ¹⁸O-enriched samples of sodium phosphate ultimately led to triplet patterns in the P-O stretching region characteristic of a species containing two equivalent oxygen atoms. Extension of these studies to cover the PO2 bending mode reveals a similar triplet pattern. Figure 1(b) shows the three fundamentals assigned to NaP16O2, whilst Figure 1(c) shows the same spectral regions for the ¹⁸O-enriched material. The intensity ratios of the components in each triplet are the same, within experimental error, and correspond to ca. 26 atom % 18O enrichment in a species containing two equivalent oxygen atoms. The frequencies of these nine bands are listed in Table 2, together with their assignments, and in addition to confirming our identification of the A_1 $F_{R\phi}$ are interaction constants. These parameters, together with the bond angle, may all be evaluated from the data for $\mathrm{NaP^{16}O_2}$ and $\mathrm{NaP^{18}O_2}$ using standard secular equations, and the additional frequencies available for the partially enriched species $\mathrm{NaP^{16}O^{18}O}$ thus result in an overdetermination of the vibrational problem. A successful fit for all nine isotopic frequencies will therefore confirm our spectral assignments and also provide an estimate of the OPO bond angle. The results of our GVFF calculations on the PO₂ unit in NaPO2 are included in Table 2 (Calc. I) where the comparison with the experimental data is clearly very satisfactory. In these calculations, the bond angle $OPO = 114^{\circ}$ was obtained from the B_2 mode, and the attendant uncertainty arising from errors in frequency is ca. $\pm 3^{\circ}$. This angle is somewhat smaller than that found in SO₂ (119.5°),9 but rather similar to that in H₂PO₂ salts (ca. 116°). However, our estimate neglects the effect of both anharmonicity and of vibrational coupling with low frequency cation motion and it would be realistic to place an uncertainty of $\pm 5^{\circ}$ on this value. The line diagram in Figure 1(d) summarises the results of these frequency calculations, and includes the expected relative band intensities for each of the three triplets, assuming two chemically equivalent oxygen atoms and statistical abundances appropriate to 26 atom % ¹⁸O enrichment. Any significant departure from equivalence between the two oxygen atoms would be revealed by a splitting of the central (16O18O) component of one or more of these triplets. The observed spectrum, however, shows no evidence of such a splitting for any of the fundamentals. Finally, it must be noted that although these results strongly indicate oxygen atom equivalence in NaPO₂, the experiments provide no method for distinguishing between the proposed C_{2v} structure and a lower symmetry structure in which, for example, the cation could lie in any position on the plane bisecting the OPO angle. This type of structural information will be difficult to establish from conventional high-temperature electron diffraction studies but might be possible using cooled beams. MAsO₂ Species.—Figure 2(a) shows the nitrogen matrix spectrum obtained from the vaporisation of potassium arsenite (KAsO₂) at ca. 1 100 K contained in a platinum sample holder. Apart from the presence of CO_2 , and traces of As₄O₆ (at ca. 829 cm⁻¹, denoted †) ¹¹ these bands have not been observed before. Two of the new absorptions lie in the As-O stretching region, at 852.6 and 865.4 cm⁻¹, whilst the third occurs at 409.2 cm⁻¹, and by analogy with the MPO₂ systems reported above, these three bands are provisionally assigned to the AsO_2 modes in a C_{2v} cyclic species, $KAsO_2$. The same three bands could also be obtained from samples prepared by heating 1:1 mixtures of K₂CO₃ and As₂O₃ (see Experimental section), and parallel studies on the sodium and caesium systems yielded a similar pattern of new absorptions. The frequencies are summarised in Table 1. However, although the potassium and caesium systems produced only traces of As₄O₆, the vaporisation of either NaAsO₂, or samples derived from $Na_2CO_3 + As_2O_3$ mixtures, produced significant amounts of As₄O₆ in addition to the bands of interest. Several experiments were also carried out on mixtures of $Li_2CO_3 + As_2O_3$ but these regularly produced only As₄O₆, and no evidence was found for LiAsO₂ absorp- The initial assignment of the new bands as vibrations of the AsO₂ unit is supported firstly by comparison with the vibrational spectrum of monomeric SeO₂ and secondly by ¹⁸O studies. In gas-phase SeO₂, the three fundamentals lie 12 at 967 (v_3 , B_2), 923 (v_1 , A_1), and at 368 cm^{-1} (v_2 , A_1) and the bond angle has been accurately established 13 as OSeO = $113^{\circ}50'$. In low-temperature matrices, i.r. bands have been observed at 965.6, 922.0, and 372.5 cm⁻¹ in argon, ¹⁴ with counterparts at 967.4, 928.4, and 371.9 cm⁻¹ in nitrogen, ¹⁵ and in both these matrices, v₃ is significantly more intense in the i.r. than v_1 . Our spectrum for KAsO₂ [Figure 2(a)] shows two closely spaced higher frequency bands, but in contrast to SeO₂, the more intense component lies at lower frequency. This suggests that in molecular KAsO₂, the A_1 As-O stretch lies above the more intense B_2 mode and the band assignments (Table 1) for our MAsO₂ modes are made on this basis. Confirmation of this assignment comes from experiments on ^{18}O -enriched CsAsO₂. The caesium system was chosen for this study (in preference to the other cations) as it produced virtually no As_4O_6 , and simple calculations had indicated that the presence of As_4O_6 would interfere with the ^{18}O isotope patterns expected for all the MAsO₂ systems. Isotope Patterns for ¹⁸O-enriched CsAsO₂.—The spectra obtained for ¹⁸O-enriched CsAsO₂ show a total of nine bands. Three of these are found in the range 370—400 FIGURE 2 (a) N₂ matrix i.r. spectrum obtained from vaporisation of KAsO₂. (b) Infrared spectrum of the As–O stretching region for ca. 63 atom % ¹⁸O-enriched CsAsO₂. (c) Calculated spectrum cm⁻¹, and by comparison with the NaPO₂ data are readily assigned as the bending modes of the AsO₂ unit in CsAs16O2, CsAs16O18O, and CsAs18O2 (Table 2). The remaining six bands occur in the As-O stretching region. but their interpretation is not as straightforward. Figure 2(b) shows the spectrum obtained from this system with an ¹⁸O isotope enrichment of ca. 63 atom %. At first glance it would appear to consist of two triplets similar to those found for ¹⁸O-enriched NaPO₂. However, comparison with the pure ¹⁶O data shows that the upper triplet includes both the A_1 and B_2 modes of CsAs¹⁶O₂ rather than one band from each isotopomer. These both shift by ca. 40 cm⁻¹ to give CsAs¹⁸O₂ counterparts at 814.1 and 821.0 cm⁻¹ and the bands due to CsAs¹⁶O¹⁸O are assigned at 817.1 and 857.7 cm⁻¹. The frequency separation between these mixed isotope bands is ca. 40 cm⁻¹ and is thus significantly greater than the A_1 – B_2 separations of ca. 10 cm⁻¹ in the isotopically pure species. In CsAs¹⁶O¹⁸O the two As–O stretching modes have evidently interacted strongly and Figure 2(b) shows that as a result of this there has also been significant intensity borrowing by the 857.7 cm⁻¹ component at the expense of its partner. Qualitatively, this might have been anticipated, as the ¹⁶O–¹⁸O isotope shifts in this system were estimated to be larger than the A_1 – B_2 frequency difference, but it is important to confirm this interpretation using a more quantitative approach. Two models were chosen in order to obtain a spectral fit for this ¹⁸O data. Firstly, a GVFF analysis was carried out for the bent AsO₂ unit in an attempt to fit the nine fundamentals observed in the mixed isotope experiment. A comparison between the observed frequencies and those calculated using this model (Calc. II) is available from Table 2, and the agreement is very satisfactory. However, this analysis does not lend itself easily to a corresponding treatment of band intensities, and in order to simulate the intensity borrowing in CsAs¹⁸O¹⁸O a second set of calculations was performed in which the As-O stretching modes are factored off from the remaining vibrations of the molecule. Only two parameters are therefore retained in the corresponding force field [equation (2)]. Provided that these two $$2V = F_{R}(\Delta R_{1}^{2} + \Delta R_{2}^{2}) + 2F_{RR}\Delta R_{1}\Delta R_{2}$$ (2) force constants adequately reproduce the stretching frequency data the principal advantage of this approach is that it then allows the calculation of the relative intensities of all six components assuming only the general validity of the bond dipole model for i.r. intensities. No additional specific parameters are necessary. The appropriate secular equations for the two stretching modes in a bent species of type YXY' (e.g. the As-O stretching modes in CsAs¹⁶O) are (3) and (4). In $$\lambda_1 + \lambda_2 = F_R(G_{11} + G_{22}) + 2F_{RR}G_{12}$$ (3) $$\lambda_1\lambda_2 = (F_R^2 - F_{RR}^2)(G_{11}G_{22} - G_{12}G_{21})$$ (4) these equations $G_{11}=\frac{1}{M_X}+\frac{1}{M_Y}$, $G_{22}=\frac{1}{M_X}+\frac{1}{M_{Y'}}$, and $G_{12}=G_{21}=\frac{\cos \phi}{M_X}$, where ϕ is the angle YXY', and M_X and M_Y denote the masses of atoms X and Y. If the usual assumption is made that $\lambda=4\pi^2c^2v^2$, where v is the observed vibrational transition (in cm⁻¹), these two equations will generate the As-O stretching frequencies of CsAs¹⁶O₂, CsAs¹⁶O¹⁸O, and CsAs¹⁸O₂ using only F_R , F_{RR} , and ϕ as independent variables. The results of this of CsAs¹⁶O₂, CsAs¹⁶O₁₈O, and CsAs¹⁸O₂ using only $F_{\rm R}$, $F_{\rm RR}$, and ϕ as independent variables. The results of this model (Calc. III) are included in Table 2, and it is interesting to note that this simpler force field is only marginally less successful than the GVFF in reproducing the observed stretching modes. The values of $F_{\rm R}$ and $F_{\rm RR}$ are very similar to the corresponding parameters in the GVFF indicating that the separation of stretching and bending modes in this molecule is a relatively harmless approximation, and this in turn suggests that the relative intensities of these stretching modes might be predicted using the simple bond dipole approach. For the two stretching modes considered here, the general expressions 16 (5) and (6) may be simplified to (7) and (8). Here I_1 and I_2 may be termed 'intrinsic $$\Sigma I_{\mathbf{k}} = \Sigma \frac{\partial \mu}{\partial S_{\mathbf{k}'}} \cdot \frac{\partial \mu}{\partial S_{\mathbf{k}''}} \cdot G_{\mathbf{k}'\mathbf{k}''} \tag{5}$$ $$\Sigma \frac{I_{\mathbf{k}}}{\lambda_{\mathbf{k}}} = \Sigma \frac{\partial \mu}{\partial S_{\mathbf{k}'}} \cdot \frac{\partial \mu}{\partial S_{\mathbf{k}''}} \cdot F_{\mathbf{k}'\mathbf{k}''}^{-1}$$ (6) $$I_1 + I_2 = G_{11} + G_{22} + 2G_{12}\cos\phi \tag{7}$$ $$\frac{I_1}{\lambda_1} + \frac{I_2}{\lambda_2} = (2F_R - 2F_{RR}\cos\phi)/(F_R^2 - F_{RR}^2) \quad (8)$$ intensities ', and correspond to the relative intensities of the two stretching modes for a given isotopomer. In order to predict the relative intensities in a mixture of isotopomers, these values must be weighted according to the appropriate statistical abundances. The line diagram in Figure 2(c) shows how useful this simple model turns out to be. Not only is the frequency fit satisfactory, but the model has been surprisingly successful in predicting both the relative intensities of the A_1 and B_2 modes in $\text{CsAs}^{16}\text{O}_2$ and $\text{CsAs}^{18}\text{O}_2$, and also the extent of intensity borrowing in $\text{CsAs}^{16}\text{O}^{18}\text{O}$. The OAsO bond angle is estimated to be ca. 115° from these analyses, and the uncertainties in frequency associated with the B_2 stretching modes (ca. 0.5 cm⁻¹) lead to an estimated error in bond angle of ca. $\pm 4^{\circ}$. MSbO₂ Species.—Figure 3(a) shows the nitrogen matrix spectrum obtained from the vaporisation of a K₂CO₃-Sb₂O₃ mixture at ca. 1 200 K. In addition to the CO₂ absorption at ca. 662 cm⁻¹, this spectrum shows three prominent bands at 744.8, 764.6, and 339.0 cm⁻¹, and these same new bands were also obtained from samples of KSb(OH), which had been preheated to remove water. The similarity with the spectrum previously obtained from K₂CO₃-As₂O₃ mixtures suggests that these three bands correspond to SbO₂ modes in the analogous species KSbO₂. Two much weaker features (denoted by a cross) are also present in Figure 3(a) at 734 and 569 cm⁻¹, but comparison between several different experiments revealed a variable-intensity behaviour of these bands with respect to those attributed to KSbO₂, and they remain unassigned. Corresponding studies on the sodium and caesium systems yielded similar bands, with only minor frequency shifts, and the results of all these experiments are summarised in Table 1, together with suggested assignments based on a $C_{2\nu}$ SbO₂ unit. The vaporisation of Li_2CO_3 -Sb₂O₃ mixtures under similar conditions produced only Sb₄O₆. ¹⁸O enrichment in KSbO₂. The effect of ¹⁸O enrichment on these antimony systems was qualitatively very similar to that found for CsAsO₂. In particular, low-resolution studies on samples of ¹⁸O-enriched KSb(OH)₆ produced a simple triplet in the SbO₂ bending region (at 339, 331, and 323 cm⁻¹) and a complex pattern of six bands for the Sb–O stretching modes. Under higher resolution, however, two of these latter bands could be resolved into doublets giving a total of eight components, and a typical spectrum is shown in Figure 3(b). The degree of enrichment in this experiment was ca. 67 atom % ¹⁸O, and the assignment of this spectrum in terms of FIGURE 3 (a) N₂ matrix i.r. spectrum obtained from vaporisation of a solid mixture of K₂CO₃ + Sb₂O₃. (b) Infrared spectrum of the Sb-O stretching region for ca. 67 atom % ¹⁸O-enriched KSbO₂. (c) Calculated spectrum. (d) Sb-O stretching modes in KSb¹⁶O₂ under higher resolution. (e) Sb-O stretching modes in CsSb¹⁶O₂ showing partially resolved doublets. (f) Calculated antimony isotope fine structure in CsSb¹⁶O₂ the various isotopomers of $KSbO_2$ is relatively straightforward (Table 2). Comparison with the data on $CsAsO_2$ indicates that it is the mixed species $KSb^{16}O^{18}O$ which gives rise to the two doublets [Figure 3(b)] and this suggests that the two Sb-O bonds in $KSbO_2$ are not strictly equivalent. Two sets of calculations were therefore carried out to clarify the position. The first approach was to attempt to reproduce all eleven frequencies observed for this mixture of isotopomers using a GVFF calculation. The inequivalence between the Sb-O bonds was simulated by allowing two different principal stretching constants, but apart from this minor change, the analysis was identical to that performed on CsAsO₂. The results of these frequency calculations are summarised under Calc. IV in Table 2, and the agreement with the observed bands is very satisfactory. As in the case of CsAsO₂, the bond angle OSbO is treated as a variable parameter in the analysis, and the value which emerges for KSbO₂ is 106°. The estimated error limits based on frequency uncertainties in the B_2 modes are $ca. \pm 5^\circ$, and it is interesting to note that this angle has a similar value to that estimated for TeO₂ ($ca. 110^\circ$) isolated in low-temperature matrices.¹⁷ One of the more significant features of the CsAsO₂ system was the mutual interaction of the two As-O stretches in CsAs¹⁶O¹⁸O, and Figure 3(b) shows that a similar phenomenon is present in KSbO₂. Although the frequency perturbation is satisfactorily reproduced by the GVFF approach, it seemed worthwhile to attempt an intensity fit using the same approach as for CsAsO₂. The frequencies calculated using this simple force field are included in Table 2 under Calc. V, and our relative intensity predictions for 67 atom % 18O enrichment are shown in Figure 3(c). In this diagram, we have assumed that the total intensity expected for the KSb¹⁶O¹⁸O bands is distributed equally between the components of each doublet. Both models therefore strongly support our original assignment of these bands as fundamentals of a bent SbO₂ unit, and this raises two important points. The first concerns the apparent inequivalence of the two Sb-O bonds, and the second poses the question as to whether any of these fundamentals should show a resolvable antimony isotope effect. Both vibrational analyses indicate a relatively small difference (ca. 0.6%) between the two principal Sb-O stretching constants. This could represent either a genuine distortion from presumed C_{2v} symmetry such that this inequivalence persists in the free molecule, or alternatively it could arise from a perturbation induced by the matrix environment; for example, by trapping in a low symmetry site. As indicated earlier, argon matrix spectra unfortunately showed complex absorptions for the parent $KSb^{16}O_2$ modes, and would therefore be of little help. We therefore chose instead to carry out two ^{18}O -enrichment experiments on $CsSbO_2$ to see whether this apparent inequivalence was a general feature of $MSbO_2$ systems. ¹⁸O enrichment in CsSbO₂. The product obtained from the fusion of Cs2CO3 with Sb2O3 was found to be virtually insoluble in water, but after several weeks contact with H₂¹⁸O in a sealed tube was found to have undergone ¹⁸O exchange to a limited extent. The nitrogen matrix spectrum obtained from the vaporisation of this material showed four prominent Sb-O stretching frequencies at 763.2, 743.6, 755.4, and 713.5 cm⁻¹. Two of these correspond to the CsSb16O2 fundamentals assigned earlier (Table 1) whilst those at 755.4 and 713.5 cm⁻¹ are assigned to CsSb¹⁶O¹⁸O by comparison with the positions of the doublets in KSb16O18O (Table 2). The two bands of CsSb18O2 in this region could not be located with any confidence owing to the low degree of enrichment. Examination of these four bands at a spectral slit-width of 1.4 cm⁻¹ revealed no band splittings, and CsSbO₂ would therefore appear to contain equivalent Sb-O bonds. The splitting observed in the KSb¹⁶O¹⁸O bands (ca. 2 cm⁻¹) does not therefore appear to be a general feature of MSbO₂ systems and in view of the small difference in principal force constants required to simulate this splitting, we consider it to be a matrix perturbation caused by trapping on a low-symmetry site. Antimony Isotope Effects.—Naturally occurring antimony consists of two isotopes, ¹²¹Sb (57.3%) and ¹²³Sb (42.7%), and it may readily be shown that in a bent SbO₂ unit with OSbO ca. 106°, the resulting isotope splittings expected on Sb-O stretching modes at ca. 750 cm⁻¹ are in the range 0.5—1.0 cm⁻¹. Examination of our KSb16O2 spectra in this region under optimum resolution conditions (typically ca. 0.5 cm⁻¹), however, yielded rather broad singlets. A typical spectrum is shown in Figure 3(d). However, at a resolution of better than ca. 1 cm⁻¹, the caesium system began to show evidence of band splitting, and at a spectral slitwidth of 0.4 cm^{-1} , the spectrum shown in Figure 3(e) was obtained. Here, the upper (A_1) fundamental at 763.2 cm⁻¹ appears as a doublet with a separation of ca. 0.5 cm⁻¹, whilst the mode at 743.6 cm^{-1} is split by $ca. 0.8 \text{ cm}^{-1}$ (Table I). Although it is possible that these splittings arise from matrix effects, we believe that they are in fact due to the two antimony isotopes. This assignment is supported by a calculation of the 121Sb-123Sb splitting for each fundamental using the two-parameter force field described earlier. Figure 3(f) shows the positions and relative intensities of the antimony isotope doublets expected for an SbO₂ unit with a bond angle of 106° where the principal and interaction stretching constants have values of 4.74 and 0.27 mdyn A-1 respectively.* The agreement is very satisfactory, and in addition to confirming the presence of one atom of antimony, these splittings are also consistent with our assignment of the symmetric and asymmetric modes. ### CONCLUSIONS The results described in this paper are consistent with the isolation of new high-temperature molecular species MXO_2 , where M is an alkali metal and X = P, As, or Sb. However, although our isotope experiments and vibrational analyses provide convincing evidence for the presence of XO2 units, there is little direct indication of the presence of an alkali metal in these species. Only in LiPO2 were we able to observe bands which might be assigned to cation motion, and for the remaining species, the presence of the alkali metal was inferred from the cation dependence of the XO₂ frequencies. It is therefore important to inquire whether the presence of an alkali metal is confirmed by other studies. The only experiments to date which indicate directly the presence of an alkali metal in any of these molecules are the mass-spectrometric studies on phosphates reported by Gingerich and Miller. 18 As discussed in our earlier note,3 this mass-spectrometric work involved the vaporisation of sodium phosphate under potentially reducing conditions, and a prominent ion current was noted for NaPO₂⁺. This was believed to originate from a neutral NaPO2 precursor, and it was also found that ion currents for binary species $P_x O_y^+$ were relatively low. The evidence for alkali-metal transport in this system is therefore fairly conclusive, and we visualise an essentially ionic structure $Na^+\begin{pmatrix} O \\ O \end{pmatrix} P$ for this molecule. Corresponding mass-spectrometric studies on the arsenic and antimony systems do not appear to have been carried out, but we believe that essentially ionic MXO₂ ring structures are similarly present in these systems, and provide the best interpretation of our spectroscopic data. Although the OAsO and OSbO angles which emerge from these analyses inevitably carry fairly large error limits (ca. $\pm 5^{\circ}$) as a result of experimental uncertainties and approximations in the vibrational model, these angles are similar to those previously reported in SeO₂ and TeO₂ respectively. The decrease in bond angle from As (or Se) to Sb (or Te) may be chemically significant, and would be consistent with a decreasing involvement of s orbitals in the σ system. We gratefully acknowledge the financial support of the S.R.C. for this work, and wish to thank Professor I. R. Beattie for helpful discussions. [1/1586 Received, 12th October, 1981] #### REFERENCES - ¹ See for example, I.R. Beattie, J. S. Ogden, and D. D. Price, J. Chem. Soc., Dalton Trans., 1979, 1460; J. S. Ogden and S. J. Williams, ibid., 1981, 456. - ² S. N. Jenny and J. S. Ogden, J. Chem. Soc., Dalton Trans., 1979, 1465. - J. S. Ogden and S. J. Williams, J. Chem. Phys., 1980, 73, - ⁴ See for example, J. R. Van Wazer, 'Phosphorus and its Compounds,' Interscience, New York, 1958, vol. 1, p. 279. ⁵ I. R. Beattie, H. E. Blayden, S. M. Hall, S. N. Jenny, and - J. S. Ogden, J. Chem. Soc., Dalton Trans., 1976, 666. See for example, W. Levason, R. Narayanaswamy, J. S. Ogden, A. J. Rest, and J. W. Turff, J. Chem. Soc., Dalton Trans., - ⁷ R. D. Shelton, A. H. Nielsen, and W. H. Fletcher, J. Chem. Phys., 1953, 21, 2178. - M. Abenoza and V. Tabacik, J. Mol. Struct., 1975, 26, 95. M. H. Sirvetz, J. Chem. Phys., 1951, 19, 938. J. L. Galigne and Y. Dumas, Acta Crystallogr., Sect. B, - 1973, **29**, 1115. - ¹¹ S. N. Jenny, Ph.D. Thesis, University of Southampton, 1981. 12 P. A. Giguere and M. Falk, Spectrochim. Acta, 1960, 16, 1; D. Boal, G. Briggs, H. Huber, G. A. Ozin, E. A. Robinson, and A. Vander Voet, *Chem. Commun.*, 1971, 686. - 13 H. Takeo, E. Hirota, and Y. Morino, J. Mol. Spectrosc., 1970, - 34, 370. 14 S. N. Cesaro, M. Spoliti, A. J. Hinchcliffe, and J. S. Ogden, J. Chem. Phys., 1971, 55, 5834; J. W. Hastie, R. Hauge, and J. L. Margrave, J. Inorg. Nucl. Chem., 1969, 31, 281. - A. J. Hinchcliffe, D.Phil. Thesis, University of Oxford, 1971. See for example, E. B. Wilson, jun., J. C. Decius, and P. C. Cross, 'Molecular Vibrations,' McGraw-Hill, New York, 1955, pp. 166 and 192. - 17 D. W. Muenow, J. W. Hastie, R. Hauge, R. Bautista, and J. L. Margrave, Trans. Faraday Soc., 1969, 65, 3210. - ¹⁸ K. A. Gingerich and F. Miller, J. Chem. Phys., 1975, **63**, 1211. ^{*} Throughout this paper: $1 \text{ dyn} = 10^{-5} \text{ N}$.